Learning to Aggregate Ordinal Labels by Maximizing Separating Width
نویسندگان
چکیده
While crowdsourcing has been a cost and time efficient method to label massive samples, one critical issue is quality control, for which the key challenge is to infer the ground truth from noisy or even adversarial data by various users. A large class of crowdsourcing problems, such as those involving age, grade, level, or stage, have an ordinal structure in their labels. Based on a technique of sampling estimated label from the posterior distribution, we define a novel separating width among the labeled observations to characterize the quality of sampled labels, and develop an efficient algorithm to optimize it through solving multiple linear decision boundaries and adjusting prior distributions. Our algorithm is empirically evaluated on several real world datasets, and demonstrates its supremacy over state-ofthe-art methods.
منابع مشابه
Ordinal margin metric learning and its extension for cross-distribution image data
In machine learning and computer vision fields, a wide range of applications, such as human age estimation and head pose recognition, are related to ordinal data in which there exists an order relationship. To perform such ordinal estimations in a desired metric space, in this work we first propose a novel ordinal margin metric learning (ORMML) method by separating the data classes with a seque...
متن کاملAggregating Ordinal Labels from Crowds by Minimax Conditional Entropy
We propose a method to aggregate noisy ordinal labels collected from a crowd of workers or annotators. Eliciting ordinal labels is important in tasks such as judging web search quality and rating products. Our method is motivated by the observation that workers usually have difficulty distinguishing between two adjacent ordinal classes whereas distinguishing between two classes which are far aw...
متن کاملAnnotation models for crowdsourced ordinal data
In supervised learning when acquiring good quality labels is hard, practitioners resort to getting the data labeled by multiple noisy annotators. Various methods have been proposed to estimate the consensus labels for binary and categorical labels. A commonly used paradigm to annotate instances when the labels are inherently subjective is to use ordinal scales. In this paper we propose annotato...
متن کاملMulti-Instance Dynamic Ordinal Random Fields for Weakly-supervised Facial Behavior Analysis
We propose a Multi-Instance-Learning (MIL) approach for weakly-supervised learning problems, where a training set is formed by bags (sets of feature vectors or instances) and only labels at bag-level are provided. Specifically, we consider the Multi-Instance Dynamic-Ordinal-Regression (MI-DOR) setting, where the instance labels are naturally represented as ordinal variables and bags are structu...
متن کاملDiscriminative learning from partially annotated examples
A number of algorithms and its applications for automatic classifiers learning from examples is ever growing. Most of existing algorithms require a training set of completely annotated examples, which are often hard to obtain. In this thesis, we tackle the problem of learning from partially annotated examples, which means that each training input comes with a set of admissible labels only one o...
متن کامل